Thứ Ba, 29 tháng 9, 2015

Chuyển năng lượng Mặt Trời thành điện (QUANG ĐIỆN)

Các tấm pin Mặt Trời chuyển đổi trực tiếp ánh sáng thành điện năng, như thường được thấy trong các máy tính cầm tay hay đồng hồ đeo tay. Chúng được làm từ các vật liệu bán dẫn tương tự như trong các con bộ điện tử trong máy tính. Một khi ánh sáng Mặt Trời được hấp thụ bởi các vật liệu này, năng lượng Mặt Trời sẽ đánh bật các hạt điện tích (electron) năng lượng thấp trong nguyên tử của vật liệu bán dẫn, cho phép các hạt tích điện này di chuyển trong vật liệu và tạo thành điện. Quá trình chuyển đổi photon thành điện này này gọi là hiệu ứng quang điện. Cho dù được phát hiện từ hơn 200 năm trước[iii], kỹ thuật quang điện chỉ phát triển rộng rãi trong ứng dụng dân sự kể từ cuộc khủng hoảng dầu mỏ vào năm 1973[iv].

Các pin Mặt Trời thông thường được lắp thành một module khoảng 40 phiến pin, và 10 module sẽ được lắp gộp lại thành chuỗi Quang điện có thể dài vài mét. Các chuỗi Pin Mặt Trời dạng phẳng này được lắp ở một góc cố định hướng về phía Nam, hoặc được lắp trên một hệ thống hiệu chỉnh hướng nắng để luôn bắt được nắng theo sự thay đổi quĩ đạo của nắng Mặt Trời. Qui mô hệ thống quang điện có thể từ mức 10-20 chuỗi quang điện cho các ứng dụng dân sự, cho đến hệ thống lớn bao gồm hàng trăm chuỗi quang điện kết nối với nhau để cung cấp cho các cơ sở sản xuất điện hay trong các ứng dụng công nghiệp...
Một số dạng pin Mặt Trời được thiết kế để vận hành trong điều kiện ánh sáng Mặt Trời hội tụ. Các Pin Mặt Trời này được lắp đặt thành các collector tập trung ánh sáng Mặt Trời sử dụng các lăng kính hội tụ ánh sáng. Phương pháp này có mặt thuật lợi và bất lợi so với mạng Pin Mặt Trời dạng phẳng (flat-plate PV). Thuận lợi ở điểm là sử dụng rất ít các vật liệu Pin Mặt Trời bán dẫn đắt tiền trong khi đó hấp tối đa ánh sáng Mặt Trời. Mặt bất lợi là các lăng kính hội tụ phải được hướng thẳng đến Mặt Trời, do đó việc sử dụng các hệ hấp thu tập trung chỉ khai triển ở những khu vực có nắng nhiều nhất, đa số đòi hỏi việc sử dụng các thiết bị hiệu chỉnh hướng nằng tối tân, kỹ thuật cao.
Hiệu quả của Pin Mặt Trời phụ thuộc trực tiếp vào hiệu suất chuyển đổi ánh sáng thành điện năng của phiến pin MặT TRờI. Chỉ có ánh sáng Mặt Trời với mức năng lượng nhất định mới có thể chuyển đổi một cách hiệu quả thành điện năng, chưa kể đến một phần lớn lượng ánh sáng bị phản chiếu lại hoặc hấp thu bởi vật liệu cấu thành phiến pin. Do đó, hiệu suất tiêu biểu cho các loại pin Mặt Trời thương mại hiện nay vẫn tương đới thấp, khoảng 15% (tương đương với 1/6 bức xạ Mặt Trời chiếu đến pin được chuyển thành điện)[v]. Hiệu suất thấp dẫn đến việc đòi hỏi tăng diện tích lắp đặt để đạt được công suất đưa ra, tức là tăng giá thành sản xuầt. Do đó, mục tiêu hành đầu hiện nay của ngành công nghiệp ĐMT là tăng hiệu quả Pin và giảm giá thành trên đơn vị phiến pin.
 


    5.3.1. Nguyên lý 

    a) Phiến pin quang điện (Photovoltaic Cell)
 
 
Phiến pin quang điện là kỳ công của vật lý tinh thể và bán dẫn. Nó được cấu tạo từ các lớp phẳng và mỏng của các vật liệu đặc biệt gọi là bán dẫn xếp chồng lên nhau (Hình 5.4).
 


Có 3 lớp vật liệu chính: lớp trên cùng gọi là silicon loại n (n: negative, âm), vật liệu này có khả năng “phóng thích” các hạt tích điện âm gọi là electron một khi được đưa ra ngoài ánh sáng mặt trời. Lớp dưới cùng gọi là lớp p, tích điện dương khi tiếp xúc với bức xạ Mặt Trời (p: positive, dương). Lớp vật liệu ở giữa gọi là lớp chèn (junction), lớp này có vai trò như một lớp phân cách (insulator) giữa lớp n và lớp p. Các eletron được phóng thích từ lớp n sẽ di chuyển theo đường ít bị cản trở nhất, tức là di chuyển từ lớp n tích điện âm ở bên trên về lớp p tích điện dương ở bên dưới. Như vậy, nếu vùng p và vùng n được nối bởi một mạch điện tạo bởi các dây dẫn mỏng, dòng electron sẽ di chuyển trong mạch điện này, tạo ra dòng điện một chiều có thể được sử dụng trực tiếp hoặc được “dự trữ” để dùng sau. Cường độ dòng điện sinh ra phụ thuộc vào số lượng và phương thức nối các tế bào Mặt Trời trong pin Mặt Trời.

      
Vật liệu bán dẫn cơ bản và được sử dụng rộng rãi nhất trong tế bào quang điện là silicon đơn tinh thể. Các tế bào silicon đơn tinh thể cũng có hiệu suất cao hơn cả, thông thường có thể chuyển đổi đến 23% năng lượng Mặt Trời thu nhận được thành điện. Các tế bào này cũng rất bền và có tuổi thọ sử dụng cao. Vấn đề chủ yếu là giá thành sản xuất. Tạo nên silicon tinh thể lớn và cắt chúng thanh những miếng nhỏ và mỏng (0,1-0,3 mm) là rất tốn thời gian và chi phí cao. Do lý do này, để giảm giá thành sản xuất, người ta phát triển nghiên cứu các vật liệu thay thế cho tế bào silicon đơn tinh thế, ví dụ như tế bào silicon đa tinh thể, các pin quang điện công nghệ “màng mỏng”, và các tổ hợp tập trung. 
    b) Hệ thống Pin Quang Điện (Photovoltaic System) 
Cơ chế quang điện cho thấy cường độ dòng quang điện tỷ lệ thuận với cường độ ánh sáng Mặt Trời. Dòng điện sinh ra truyền qua chuỗi các tế bào quang điện, hay còn gọi là module quang điện, có thể cung cấp điện ở bất cứ qui mô nào, từ vài miliwatt (MW) như trong máy tính bỏ túi cho đến vài MW như qui mô các nhà máy điện. Dòng quang điện một chiều có thể được nạp vào bình acqui để dự trữ cho các sinh hoạt về ban đêm hoặc vào những ngày không có nắng. Một bộ điều khiển thường được cài giữa module và bình ắc qui như một dạng ốn áp, giúp tránh trường hợp ắc qui bị sạc quá tải. Toàn bộ các thiết bị này liên kết lại thành hệ thống Quang Điện sản xuất điện một chiều có điện thế do động từ 12 đến 24 volt. Điện một chiều có thể được chuyển đổi thành điện xoay chiều thông qua bộ biến điện. Bộ biến điện DC/AC ngày nay có công suất từ 100-20,000 W và hiệu suất đạt tới 90%. 
Các module có thể được lắp nối với nhau một cách dễ dàng tạo thành chuỗi module có công suất đáp ứng với nhu cầu điện đặt ra (Hình 5.6). Một khi được lắp đặt, thì chi phí bảo trì cho module gần như không đáng kể. 
Module và các chuỗi quang điện thường được đánh giá dựa vào công suất tối đa của chúng ở điều kiện thử nghiệm tiêu chuẩn (Standard Test Conditions, viết tắt là STC). STC được qui định là module vận hành ở nhiệt độ 250C với tổng lượng bức xạ chiếu lên module là 1000 W/m2 và dưới phân bố phổ của khối khí 1,5 (Air Mass 1,5, góc nắng chiếu nghiêng 370). Do các điều kiện thử nghiệm trong phòng thí nghiệm là tương đối lý tưởng so với điều kiện thực tế của các khu vực lắp đặt ĐMT, các module chỉ đặt hiệu suất cỡ 85-90% hiệu suất thử nghiệm ở điều kiện chuẩn (STC). Các module quang điện ngày này rất an toàn, bền và đáng tin cậy, với tuổi thọ sử dụng dao động từ 20-30 năm.
     c) Hiệu suất của Pin Mặt Trời 
     Hiệu suất tối đa của phần lớn pin MT hiện nay trên thị trường là 15%, tức là chỉ có 15% ánh nắng Mặt Trời được Pin Mặt Trời chuyển thành điện. Mặc dù trên lý thuyết, hiệu suất tối đa của pin Mặt Trời có thể đạt đến 32,3% (tức là có giá trị kinh tế rất lớn), trên thực tế hiệu suất thấp hơn hơn một nửa giá trị lý thuyết, và con số 15% không được các ngành công nghiệp năng lượng xem là mang lại lợi ích kinh tế ... Các tiến bộ kỹ thuật gần đây cho phép tạo ra trong phòng thí nghiệm các tế bào quang điện đạt hiệu suất tới 28,2% (Hình 5.5). Các pin Mặt Trời dạng này vẫn còn phải qua các thử nghiệm trong điều kiện thực tế. Nếu thử nghiệm thành công trong các môi trường thử nghiệm khắc nghiệt trong tự nhiên, các pin Mặt Trời dạng này sẽ được xem là mang lại lợi ích kinh tế cụ thể và do đó việc phát triển điện Mặt Trời qui mô lớn là có tính khả thi về mặt kinh tế.
 

Không có nhận xét nào:

Đăng nhận xét